
Choros: A Distributed Coordination Framework for
Multi-Robot Botball Systems

Ankush Ahuja*, Leopold Kernegger
WeThePeople

Technologisches Gewerbemuseum
Vienna, Austria

*Corresponding author’s email: ankush@ahuja.app

Abstract—Choros is a lightweight and efficient coordination
framework for autonomous robots competing in the Botball
educational robotics competition. Instead of programming low-
level behavior sequences, Choros enables a declarative model of
robot control, where users define desired outcomes rather than
individual actions. Game tables are serialized into graph repre-
sentations, and robot positions are tracked and shared in real
time, enabling precise goal specification, dynamic task planning,
and intelligent collision avoidance. Designed for simplicity and
robustness, Choros empowers teams to focus on strategy and
reliability while maintaining low system overhead.

Index Terms—Robotics, Multi-agent systems, Distributed co-
ordination, Path planning, Botball

I. Introduction

Botball is an international educational robotics competition in
which autonomous robots are required to complete a sequence
of tasks on a predefined game table. These tasks often demand
precise navigation, coordination, and interaction with objects
in a dynamic and spatially constrained environment. A critical
component of success in Botball is accurate positioning—poor
navigation can result in missed objectives, hardware damage,
or complete failure of a competition run.

Numerous research efforts have already explored methods
for enhancing the precision of robot movement on the Botball
field. This paper builds upon findings such as those presented
in [1], which focuses on improving motion accuracy through
calibration and control techniques. However, rather than
attempting to further refine motion accuracy itself, Choros
takes a different approach: it focuses on building a high-
level, declarative navigation and coordination framework that
assumes reliable low-level motion primitives.
A. The Game Table Environment

The Botball game table, provided by KIPR, features a stan-
dardized white surface with black electrical tape arranged
in both horizontal (0°) and vertical (90°) alignments. These
black lines serve as paths for line-following and are always
continuous, allowing for intersections—an essential property
for graph-based modeling. Robots navigate this field using
reflective line sensors known as Tophat Sensors, which are
included in the official Botball kit.

These sensors operate by emitting light and measuring
its reflection from the surface below. White surfaces reflect
light strongly, while black lines absorb most of the emitted
light. This binary distinction enables the robot to distinguish

between line and non-line surfaces, facilitating accurate line-
following behavior.
B. Line Following

Line following is a foundational method for reliable movement
in Botball. By continuously adjusting the robot’s movement
based on sensor readings, the robot can drive along the black
tape with precision. Because lines on the field are always
aligned to the grid and continuous, they naturally form inter-
sections—locations where horizontal and vertical paths cross
or meet. This structural property of the game table will be of
great importance later in the design of the navigation system.
C. Square Ups

Another critical application of Tophat sensors is squaring up:
a technique where both left and right sensors are aligned on
a black line to correct the robot’s heading and lateral drift.
While line-based squaring offers reasonable accuracy, a more
precise variant known as wall square up uses two physical
bumper switches on the front of the robot. When both buttons
are pressed simultaneously against a wall, the robot can reset
its pose alignment with high precision.
D. Sensor Feedback and PID Driving

In addition to physical feedback mechanisms, KIPR’s con-
trollers include a built-in gyroscope. As discussed in [1],
this gyroscope allows for accurate heading measurements, en-
abling robots to perform controlled turns and maintain straight
paths using a PID (Proportional–Integral–Derivative) con-
troller. This greatly enhances the consistency of autonomous
driving by correcting for motor imbalances and slippage in
real time.
E. From Imperative to Declarative Control

By leveraging the structure and properties of the Botball game
table—such as line alignment, intersections, known distances,
and sensor feedback—one can design a declarative coordina-
tion system for autonomous robots.

Rather than tightly planning each route and scheduling tasks
manually to avoid collisions, the system allows users to define
what should happen—i.e., which tasks should be completed
and where—while leaving the exact when and how to the
coordination logic.

Tasks, each bound to a location and optionally dependent on
the completion of other tasks, can be treated as part of a larger
lifecycle. This enables the system to automatically adjust exe-

mailto:*Corresponding author’s email: ankush@ahuja.app

cution order, resolve dependencies, and prevent conflicts with
other robots in real time. The result is a flexible and robust
framework that supports dynamic, multi-robot coordination
on a shared game field.

II. Terminology and Algorithms

This section introduces fundamental data structures and algo-
rithms used throughout the system described in this paper.
While their specific applications will be discussed later, the
following definitions and procedures are essential to under-
standing the framework’s internal logic and decision-making
processes.
A. Graphs

A graph is a data structure consisting of a set of nodes
(also called vertices) and edges connecting pairs of nodes.
Graphs are widely used to model relationships, connectivity,
and structure in both physical and abstract systems.

This paper specifically uses directed graphs. In a directed
graph, each edge has a direction—it connects a source node to
a destination node and not the other way around. This direc-
tionality allows graphs to represent one-way relationships,
such as movement constraints, causality, or precedence.

Each edge in a graph may also be assigned a weight,
representing a cost, distance, time, or any other metric asso-
ciated with traversing that edge. Weighted, directed graphs
are the foundation for many types of planning and scheduling
problems.

Fig. 1: A directed, weighted graph.

B. Pathfinding

Pathfinding refers to the process of determining the optimal
path between nodes in a graph. The goal is typically to
minimize the total cost accumulated along a path, where costs
are derived from edge weights.

One of the most well-known pathfinding algorithms is
Dijkstra’s algorithm [2]. Dijkstra’s algorithm computes the
shortest paths from a single source node to all other nodes in
a graph with non-negative edge weights. Dijkstra’s algorithm
guarantees optimal paths.

C. Dependency Resolution

Dependency resolution addresses the problem of ordering
tasks when certain tasks depend on the completion of others.
This problem can be modeled using a directed acyclic graph
(DAG), where each node represents a task and each directed
edge indicates that one task must be completed before another
can begin.

Because DAGs contain no cycles, they have at least one
valid topological ordering: a linear sequence of tasks that
satisfies all dependency constraints.

A common method to resolve dependencies in a DAG is
a breadth-first search (BFS)-based topological sort [3]. The
algorithm proceeds as follows:

1) Identify all nodes with zero incoming edges—these
represent tasks that can be executed immediately.

2) Place these nodes into a queue.
3) Repeatedly dequeue a node, append it to the sorted

result, and remove its outgoing edges from the graph.
4) If any neighboring nodes now have zero incoming

edges, enqueue them.
5) Continue until all nodes are processed or a cycle is

detected (in which case no valid ordering exists).
This approach ensures that each task is executed only after all
its dependencies have been resolved. The resulting order can
then be used to safely execute or schedule tasks in complex
workflows.

Fig. 2: A directed acyclic graph (DAG) illustrating task dependencies. Each
node represents a task, and directed edges represent prerequisite relationships.

III. The Navigation System

This section outlines how navigation works in its simplest
form—without the involvement of a second robot. All mecha-
nisms described here form the basis of Choros and assume a
static environment where coordination is not required.
A. Graph-Based Representation

To enable declarative navigation, the physical layout of the
Botball game table is abstracted as a directed, weighted graph.
In this model, each primary node corresponds to a line inter-
section between two black tape segments. The straight black
lines between intersections form the edges of the graph.

All edges are directed, meaning they encode a specific
direction of traversal. This is not due to mechanical limitations
but because each edge corresponds to a unique orientation in
the global coordinate system. For example, movement from
node A to B may occur at 0°, while movement from B to A
takes place at 180°. Although the physical distance between
nodes is symmetric, the direction of travel is not, making it
essential to treat each edge as a separate, directed connection.
B. Primary Node Navigation

A primary node is a location where two black lines intersect
orthogonally on the white game table surface. Navigation
between these nodes is achieved through line following. The
robot is equipped with two Tophat sensors: one is used to
track the current line, while the second is positioned to detect
new lines orthogonal to the direction of travel.

While following a line, the outer sensor constantly checks
for the presence of a perpendicular black line. When detected,
it signals that an intersection has been reached—thus identi-
fying the arrival at a new primary node. The robot then
updates its internal graph position and prepares for the next
leg of the route.

Each transition from one node to another is associated with
a cardinal direction (e.g., North, East, South, West), mapped
to a corresponding rotation angle. This allows the robot to
align itself correctly when transitioning between non-parallel
segments.

Fig. 3: Primary node navigation.

C. Secondary Node Navigation

A secondary node occurs when a black line terminates at the
edge of the game table without forming an intersection. These
endpoints are still useful for navigation and can be reached
reliably through a wall square-up.

The table edges are enclosed by PVC pipes. When a robot
follows a black line to such a boundary, it continues driving
until both of its bumper switches are triggered. This contact
ensures the robot is aligned straight against the wall. Once
this is achieved, the robot registers its position as a secondary
node and can proceed to rotate or backtrack as needed.

Fig. 4: Secondary node navigation (the right side illustrates a wall/pvc-pipe).

D. Declarative Path Planning

Rather than hardcoding each movement, Choros accepts a goal
in terms of a target node. The system computes the shortest
sequence of nodes needed to reach that goal using Dijkstra’s
algorithm.

Dijkstra’s algorithm treats the graph as a set of weighted
paths and iteratively explores all reachable nodes, always
expanding the route with the lowest total cost. The output is
a path composed of node transitions, each corresponding to
a straight-line movement between two waypoints.

To execute this path, the robot:
• Computes the relative turn angle needed to align with

the next edge.
• Follows the line segment to the next node, using square-

up techniques as necessary.
• Repeats this process until the destination node is

reached.
This declarative system simplifies both programming and
error handling, as it abstracts away the low-level motion logic
into a repeatable and well-tested procedure.
E. Locations

While nodes serve as reliable waypoints, most game elements
—such as scoring cups or dispensers—are not placed directly
on nodes. To bridge this gap, Choros introduces the concept
of a location: a precise target defined relative to a node but
positioned off the navigation graph.

Each location is described as a list of one or more vector
offsets. A vector offset consists of an x and y displacement (in
millimeters) from the last position. Internally, each vector is
converted into a direction (angle) and scalar (distance), which
are used to guide the robot’s movement.

To reach a location, the robot performs the following steps:
1) It rotates to the correct direction using the onboard

gyroscope.
2) It then advances by a calibrated distance using the

BackEMF tick counter.
This mechanism allows Choros to reach targets not aligned
with primary or secondary nodes, such as free-floating game
objects or zones. In cases where a direct path is obstructed,
multiple vectors may be chained to navigate around obstacles
while still following the shortest feasible route.

As discussed in [1], movement driven purely by BackEMF
introduces cumulative drift, especially across longer segments.
For this reason, vectors should be kept short, and locations

should be placed as close to nodes as possible. Unlike nodes,
which can be reached and confirmed using square-ups, loca-
tions depend entirely on accurate angle rotation and tick-count
calibration, making them the most error-prone and sensitive
stage in the navigation process.

IV. Networking and Coordination

This section describes the communication layer used in
Choros to enable safe multi-robot operation. The system
relies on frequent, lightweight broadcasts to share intent and
position between autonomous agents, allowing for real-time
collision avoidance without the need for centralized sched-
uling.
A. Heartbeat Transmission

Each robot periodically transmits a heartbeat message using
the User Datagram Protocol (UDP). These messages are sent
approximately every 200 milliseconds and contain a JSON-
encoded snapshot of the robot’s current intent.

The payload includes:
• The identifier of the current node the robot occupies.
• A list of planned future nodes that make up the robot’s

intended path.
The use of UDP is deliberate. Since each heartbeat is state-
less and short-lived, occasional packet loss is tolerable. New
updates quickly replace outdated ones, making the protocol
efficient and resilient for real-time environments.
B. State Sharing and Awareness

Upon receiving a heartbeat, each robot updates its internal
model of the other robot’s state. This includes:

• The other robot’s current node.
• The complete list of nodes it plans to traverse.

This shared information forms the basis for distributed deci-
sion-making: each robot remains aware of the other’s intent
and can proactively avoid path conflicts.
C. Path Claiming and Blacklisting

When a robot initiates path planning (e.g., via Dijkstra’s algo-
rithm), it blacklists any node currently included in the other
robot’s future path. These nodes are considered temporarily
claimed and cannot be used unless released.

A critical safety rule applies: a node is not considered free
the moment the other robot departs it—it becomes available
only when the other robot has reached the next node in its
path. This prevents overlap during acceleration, turning, or
communication delays.
D. Decentralized Conflict Avoidance

This system follows a simple and effective policy: first-come,
first-served. The first robot to claim a node owns it until
it progresses. If the other robot encounters a conflict while
planning, it must:

• Reroute to avoid the claimed nodes, or
• Wait and retry after the next heartbeat update.

This approach eliminates the need for centralized arbitration
and ensures collision avoidance purely through shared knowl-
edge and local planning.

E. Error Handling and Fallback Strategies

Despite the system’s lightweight design, communication is
never guaranteed. UDP packets can be dropped, robots may
reboot, or environmental interference may block messages. In
such cases, the assumption that robots can rely solely on live
coordination no longer holds.

For this reason, Choros does not eliminate the need for
planning altogether. Developers must be aware that coordi-
nation may fail and should prepare appropriate fallback
strategies.

Recommended approaches include:
• Sectoring the game table: dividing the field into distinct

regions assigned to each robot to prevent overlap. This
spatial isolation minimizes the chance of collisions even
when communication is lost.

• Alternative lifecycles: preparing simplified, non-coordi-
nated behavior sequences that can be activated if the
robot detects communication loss or failure to claim
a path.

• Timeout-based logic: introducing thresholds after which
missing heartbeats are treated as a fault condition,
prompting a transition into recovery behavior or safe
halting.

These strategies are not part of the Choros implementation
due to the vastly different requirements and constraints of
fallback designs.

V. Lifecycle and Task Management

The lifecycle of a robot in the Choros system encapsulates
every phase of its operation—from initial setup to shutdown.
While a lifecycle may appear linear in nature, its internal
structure supports robust, dynamic behavior capable of adapt-
ing to failures and execution variability.
A. Lifecycle Phases

The typical lifecycle of a robot run in Choros consists of the
following steps:

1) calibrate() — Initializes the robot’s sensors and
actuators. This may include gyroscope zeroing, Back-
EMF calibration, and alignment with the game table.

2) wait() — Pauses execution until the starting light is
detected or a start condition is met.

3) execute_tasks() — Begins execution of high-
level tasks managed through the internal dependency
graph.

4) clean() — Executes any cleanup steps such as
stowing arms or retracting mechanisms.

5) reset() — Resets internal state in preparation for
testing, reruns, or debugging sessions.

Each of these stages is executed under the authority of the
lifecycle controller which maintains references to key subsys-
tems such as the navigation logic, sensor interfaces, motor
controllers, and task manager.
B. Tasks as a Dependency Graph

Tasks in Choros are not executed in a fixed sequence. Instead,
they are modeled as nodes in a directed acyclic graph (DAG),

where each edge defines a prerequisite relationship between
tasks. A task may only be executed once all its parent (depen-
dency) tasks have either completed successfully or are marked
as not required.

This structure allows for flexible execution strategies. For
example, if a task unexpectedly fails, it may be rescheduled
for later execution, while downstream tasks that do not depend
on it may proceed unhindered. This results in a self-regulating
execution flow that dynamically adapts to runtime outcomes.

Each task returns an integer status code:
• > 0 — Task completed successfully.
• = 0 — Task failed but may be reattempted.
• < 0 — Task failed definitively and will not be retried.

C. BFS-Based Resolution and Queue Management

The lifecycle uses a breadth-first search (BFS) strategy to
identify which tasks are eligible for execution at any given
point. These tasks are placed into a task queue, which is
processed serially:

• Tasks at the front of the queue are executed first.
• On success, any adjacent tasks with all dependencies

satisfied are added to the end of the queue.
• Tasks that fail with reattempt allowed are also requeued.

This mechanism ensures that tasks are performed in a depen-
dency-safe order, and that failures do not stall the entire
process unless they block other critical operations.
D. Declarative Benefits

Because tasks are defined declaratively and reference goals
rather than step-by-step instructions, Choros can adapt fluidly
to changing execution contexts. The navigation system, for
example, does not require predefined movement scripts. If a
task requires reaching a location, the system simply computes
a path from the robot’s current position—regardless of how
it arrived there.

This is in contrast to traditional imperative strategies where
task order and routing are tightly coupled. In such systems,
a task failure often invalidates all downstream assumptions.
In Choros, however, the system adapts: tasks are retried,
reordered, or skipped as needed, and navigation is recomputed
on demand.

This approach significantly reduces the complexity of pre-
planning while increasing robustness. Developers describe
what must be done; the lifecycle decides when and how to
do it.
E. Lifecycle Encapsulation

The lifecycle itself is a container object that holds everything
the robot needs during runtime:

• Shared state (e.g., flags)
• Subsystem references (navigation, motors, sensors)
• The task graph and current task queue

Each task receives a pointer or reference to the active lifecycle,
allowing it to query or manipulate global state as needed.

VI. The Big Why

In the chaos of real-time robotics competitions like Botball,
students and developers often face the challenge of building

systems that are not only functional but also adaptable, main-
tainable, and fault-tolerant. Choros addresses this challenge
by introducing a unifying structure for perception, navigation,
task planning, and execution.

At its core, Choros is not a single algorithm or feature—
it is a methodology. It encourages teams to stop hardcoding
fragile, linear control flows and instead embrace declarative
principles that reflect how complex systems should behave in
uncertain environments.
A. Unified Architecture, Modular Components

By abstracting the game table into a navigable graph, separat-
ing navigation from task intent, and introducing the concept of
node-relative locations, we enable reliable movement across
the field. This structure is further enhanced by the lifecycle
system, which orchestrates the entire run—from sensor cali-
bration and waiting for light to executing task DAGs.

The resulting architecture is both modular and composable:
• Navigation logic is graph-based and declarative.
• Tasks are self-contained and schedule-aware.
• Lifecycle encapsulates global state, hardware references,

and coordination interfaces.
B. Rethinking Task Complexity

This architecture shifts a significant portion of complexity into
the design of each task. Since the system handles navigation
and scheduling declaratively, the burden moves toward making
each task robust and self-aware. Developers must clearly
define:

• what conditions must be satisfied before a task can
execute,

• what constitutes a success or recoverable failure,
• and how the task should react in edge cases or when a

dependency fails.
Tasks become less about scripting behavior and more
about declaring constraints and assumptions—a change that
requires deeper forethought, but results in a far more main-
tainable and adaptable system.
C. The Result

The end product is a resilient and maintainable robot behavior
model that not only performs reliably but is also easier to
debug, extend, and reuse. The system is reactive to unexpected
failures, agnostic to execution order, and centered around clear
data-driven decisions rather than procedural scripts.

Choros shows that high-level robotics frameworks can
be both simple and powerful—provided that the underlying
structure is well thought-out and grounded in abstraction, not
improvisation.

References

[1] B. Klauninger, K. Lindorfer, S. Kawicher, T. Koch, V. Griesmayer, and
L. Kornthaler, “Enhancement of Accuracy in Botball Navigation,” 2022,
[Online]. Available: https://robo4you.at/static/3964d6b8b8c801fcec42c
695f641b120/enhancement-of-accuracy-in-botball-navigation.pdf

[2] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959, doi: 10.1007/
BF01386390.

[3] “Topological Sorting Using BFS.” 2025.

https://robo4you.at/static/3964d6b8b8c801fcec42c695f641b120/enhancement-of-accuracy-in-botball-navigation.pdf
https://robo4you.at/static/3964d6b8b8c801fcec42c695f641b120/enhancement-of-accuracy-in-botball-navigation.pdf
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390

	Introduction
	The Game Table Environment
	Line Following
	Square Ups
	Sensor Feedback and PID Driving
	From Imperative to Declarative Control

	Terminology and Algorithms
	Graphs
	Pathfinding
	Dependency Resolution

	The Navigation System
	Graph-Based Representation
	Primary Node Navigation
	Secondary Node Navigation
	Declarative Path Planning
	Locations

	Networking and Coordination
	Heartbeat Transmission
	State Sharing and Awareness
	Path Claiming and Blacklisting
	Decentralized Conflict Avoidance
	Error Handling and Fallback Strategies

	Lifecycle and Task Management
	Lifecycle Phases
	Tasks as a Dependency Graph
	BFS-Based Resolution and Queue Management
	Declarative Benefits
	Lifecycle Encapsulation

	The Big Why
	Unified Architecture, Modular Components
	Rethinking Task Complexity
	The Result

	References

